Обозначу все углы, как памятку, хотя и понадобится только один из пунктов:
∠1 и ∠5, ∠3 и ∠7, ∠2 и ∠6, ∠4 и ∠8 — соответственные углы. Соответственные углы равны => ∠1 = ∠5, ∠3 = ∠7, ∠2 = ∠6, ∠4 = ∠8;
∠3 и ∠6, ∠4 и ∠5 — внутренние накрест лежащие углы. Внутренние накрест лежащие углы равны => ∠3 = ∠6, ∠4 = ∠5;
∠1 и ∠8, ∠2 и ∠7 — внешние накрест лежащие углы. Внешние накрест лежащие углы равны => ∠1 = ∠8, ∠2 = ∠7;
∠3 и ∠5, ∠4 и ∠6 — внутренние односторонние углы. Внутренние односторонние углы в сумме равны 180° => ∠3 + ∠5 = 180°, ∠4 + ∠6 = 180°;
∠1 и ∠7, ∠2 и ∠8 — внешние односторонние углы. Внешние односторонние углы в сумме равны 180° => ∠1 + ∠7 = 180°, ∠2 + ∠8 = 180°.
Итак, дано, что ∠6 = ∠4 + 84°.
Как внутренние односторонние углы:
∠6 + ∠4 = 180°,
∠6 = 180° – ∠4
=> ∠4 + 84° = 180° – ∠4,
2 × ∠4 = 180° – 84°,
2 × ∠4 = 96°,
∠4 = 96° ÷ 2 = 48°,
=> ∠6 = ∠4 + 84° = 48° + 84° = 132°;
Как смежные углы (смежные углы в сумме равны 180°):
∠4 + ∠2 = 180°, ∠2 = 180° – ∠4 = 180° – 48° = 132°;
∠6 + ∠8 = 180°, ∠8 = 180° – ∠6 = 180° – 132° = 48°;
Как вертикальные углы (вертикальные углы равны):
∠1 = ∠4 = 48°,
∠2 = ∠3 = 132°,
∠6 = ∠7 = 132°,
∠5 = ∠8 = 48°
Итого, ответ:
∠1 = 48°, ∠2 = 132°, ∠3 = 132°, ∠4 = 48°, ∠5 = 48°, ∠6 = 132°, ∠7 = 132°, ∠8 = 48°
В решении.
Объяснение:
Найдите целые решения неравенства:
-х²+10х-21>0
Приравнять к нулю и решить квадратное уравнение:
-х² + 10х - 21 = 0/-1
х² - 10х + 21 = 0
D=b²-4ac =100 - 84 = 16 √D=4
х₁=(-b-√D)/2a
х₁=(10-4)/2
х₁=6/2
х₁=3;
х₂=(-b+√D)/2a
х₂=(10+4)/2
х₂=14/2
х₂=7.
Уравнение квадратичной функции, график - парабола, ветви направлены вниз, пересекают ось Ох в точках х= 3 и х= 7.
Решение неравенства: х∈(3; 7).
Неравенство строгое, значения х= 3 и х= 7 не входят в решение, поэтому целые решения неравенства: 4; 5; 6.
1 0
2 0
3 0
4 0
5 0
6 3
7 0
8 0
9 0
10 -1 и 2
Объяснение:
потому что на ноль делить нельзя