М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vektor9931oz1kb3
vektor9931oz1kb3
19.05.2020 06:43 •  Алгебра

Автомобиль стоимостью 2400 долларов был уценен во время сезонной распродажи на 33 1/3%. сколько стоил автомобиль во время распродажи?

👇
Ответ:
mstella2003
mstella2003
19.05.2020

Пусть х дол.- стоимость автомобиля во время распродажи.

2400 дол.-100%

х дол.- 66 2/3 %

100-33 1/3=99 3/3-33 1/3=66 2/3 %- после уценки

\frac{2400}{x}=\frac{100}{66\frac{2}{3}}

\frac{2400}{x}=\frac{100}{\frac{200}{3}}

\frac{2400}{x}=\frac{300}{200}

x=\frac{2400*200}{300}=1600, то есть 1600 дол. автомобиль стоил во время распродажи.

4,8(86 оценок)
Открыть все ответы
Ответ:
Topxic
Topxic
19.05.2020

1. Количество трехзначных чисел, составленных из трех различных цифр из множества цифр 1, 2, 3, 4, 5, 6 и 7, равно количеству размещений без повторения 7 элементов по 3 позициям:

     A(7, 3) = 7!/(7 - 3)! = 7!/4! = 7 * 6 * 5 = 210.

  2. В общей формуле A(n, m) = n!/(n - m)!, отношение факториалов называется убывающим факториалом. В частном случае, при n = m получим число перестановок n элементов:

     A(n, n) = n!/(n - n)! = n!/0! = n!

  3. Аналогичный результат получим для размещений n элементов по (n - 1) позициям:

     A(n, n - 1) = n!/(n - n + 1)! = n!/1! = n!

  ответ. Количество трехзначных чисел: 210

Объяснение:

4,7(73 оценок)
Ответ:
nurpaik
nurpaik
19.05.2020

1. Количество трехзначных чисел, составленных из трех различных цифр из множества цифр 1, 2, 3, 4, 5, 6 и 7, равно количеству размещений без повторения 7 элементов по 3 позициям:

     A(7, 3) = 7!/(7 - 3)! = 7!/4! = 7 * 6 * 5 = 210.

  2. В общей формуле A(n, m) = n!/(n - m)!, отношение факториалов называется убывающим факториалом. В частном случае, при n = m получим число перестановок n элементов:

     A(n, n) = n!/(n - n)! = n!/0! = n!

  3. Аналогичный результат получим для размещений n элементов по (n - 1) позициям:

     A(n, n - 1) = n!/(n - n + 1)! = n!/1! = n!

  ответ. Количество трехзначных чисел: 210

Объяснение:

4,5(53 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ