Для отыскания наибольшего(наименьшего) значения функции существует один и тот же приём:
1) ищем производную.
2) приравниваем её к нулю и ищем корни.
3) смотрим , какие корни входят в указанный промежуток.
4)ищем значения данной функции на концах указанного промежутка и в точках, входящих в указанный промежуток.
5) пишем ответ.
Начали.
y = x³ -3x² +7x -5 [1;4]
y' = 3x² -6x +7
3x² -6x +7 = 0
D<0 корней нет
х = 1
у = 3*1² -6*1 +7 *1 -5 = -1
х = 4
у = 3*4³ -3*4²+7*4 -5 = 192 - 48 +28 -5 = 163
ответ: max y = 163
min y = -1
: если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором
. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения
, два произвольных числа, но
. Пусть мы имеем функцию
, тогда вычисляем значения функции в этих двух точках, имеем
и
, так вот, если
, тогда функция возрастающая, если же
, то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)
, т.е. функция возрастающая. А вот задание с
не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной)
. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка):
, функция возрастает, что и требовалось доказать.