Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
х^2+30=11х
х^2-11х+30=0
Корни:
D=(-11)^2-4*1*30=121-120=1
x1=(11+корень1)/2 = 12/2= 6
х2=(11-корень1)/2=10/2=5
или по Виету:
х1+х2=11
х1*х2=30
х1=5, х2= 6
ответ: 5; 6.