Объяснение:
х км/ч — скорость течения реки,
(х + 20) км/ч — собственная скорость теплохода ( скорость в стоячей воде)
Скорость движения теплохода по течению реки будет:
х+(х+20)=2х+20 км/час
Скорость движения теплохода против течения реки будет :
(х+20)-х=20 км/час
Значит можем найти время движения по течению и против течения:
время движения по течению
60 / (2х + 20) час.
против течения
60 / 20 = 3 час.
Если всего за 5,5 часа , то
5,5 - 3 = 2,5 час. - движение по течению
Отсюда :
60 / (2х + 20) = 2,5.
2,5 * (2х + 20)=60
5х + 50=60
5х=10
х = 2 км/час скорость течения реки
2 + 20 = 22 км/ч. собственная скорость теплохода ( скорость в стоячей воде)
Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
1) х= 6у
2) 2у=16х