у = 5х - 3
Точка А (0; -3)
5 · 0 - 3 = -3
-3 = -3
Точка А (0; -3) принадлежит графику функции у = 5х - 3.
Точка В (-1; -4)
5 · (-1) - 3 ≠ -4
-5 - 3 ≠ -4
-8 ≠ -4
Точка В (-1; -4) не принадлежит графику функции у = 5х -3.
Точка С (0; -3)
5 · (-2) - 3 = -13
-13 = -13
Точка С (-2; -13) принадлежит графику функции у = 5х -3.
Точка М (3; 12)
5 · 3 - 3 = 12
15 - 3 = 12
12 = 12
Точка М (3; 12) принадлежит графику функции у = 5х -3.
Точка Е(0,2; -2)
5 · 0,2 - 3 = -2
1 - 3 = -2
-2 = -2
Точка Е(0,2; -2) принадлежит графику функции у = 5х -3.
Точка К (-0,4; -1)
5 · (-0,4) - 3 ≠ -1
-2 - 3 ≠ -1
-5 ≠ -1
Точка В (-0,4; -1) не принадлежит графику функции у = 5х -3.
Обобщённый ответ: графику функции у = 5х -3 принадлежат точки А(0;-3), С(-2;-13), М(3;12) и Е(0,2;-2).
Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
-8с=32
с= 32÷(-8)
с=-4