Для начала определим точку пересечения прямых. Для этого приравняем оба уравнения:
-7/8х + 17 = -3/5 х - 16 -7/8х + 3/5х = -16 - 17 7/8х - 3/5х = 16+17 11/40 х = 33 х = 33 : 11/40 = 33 * 40/11 х = 120 Чтобы найти у подставляем х в любое из этих уравнений. Я выбрала второе. у = - 3/5 * 120 - 16 = -72-16 = -88 Точка пересечения: (120; -88) Если график уравнения проходит через эту точку, то подставив ее координаты мы должны получить верное выражение: у+рх =0 -88+120р=0 120р = -88 р = -88/120 р = -11/15 ответ: -11/15
Пусть х - скорость водителя, тогда t=240/x - время, за которое он должен проехать 240 км, x - средняя скорость, т.к. х=S/v.
Фактически водитель ехал 1,5 часа со скоростью х км/ч и проехал путь 1,5х км. Время стоянки 18 мин = 18/60 часа = 0,3 часа.
Т.о. время на оставшийся путь равно t = 240/x -1,5 -0,3, который он ехал со скоростью (х+20) км/ч,
этот путь равен (х+20)(240/x -1,8).
Составим уравнение: 1,5х + (х+20)(240/x -1,8) = 240.
Решите и найдите х. Это и будет средняя скорость.
1,5х2 +(х+20)(240 - 1,8х) = 240х; -0,3х2 - 36х + 4800 = 0;
х2 + 120х - 16000 = 0;
D= 14400 + 64000 = 78400 = 2802 ; x=80.
ответ: 80.