Пусть х - количество дней, за которые 2 слесаря вполнят задание. Тогда: х + 8 - количество дней, которые потребуются 1-му рабочему, чтобы выполнить задание. х + 18 - количество дней, которые потребуются 2-му рабочему на выполнение всего задания. Пусть также 1 - всё задание. Тогда: 1/х - часть задания, которое выполняют 2 рабочих в день. 1/(х+8) - часть задания, которое выполняет 1-й рабочий в день. 1/(х+18) - часть задания, которое выполняет 2-й рабочий в день. Теперь модно составить уравнение: 1/х = 1/(х + 8) + 1/(х + 18) 1/х = (x + 18 + x + 8)/[(x + 8)*(x + 18)] 1/x = (2x + 26)/(x^2 + 26x + 144) x^2 + 26x + 144 = x * (2x + 26) x^2 + 20x + 144 = 2x^2 + 20x x^2 = 144 x = 12
Перепишем функцию в виде уравнения.
y = − 3 x + 4
Воспользуемся уравнением для пучка прямых, проходящих через заданную точку для того, чтобы найти угловой коэффициент и точку пересечения с осью Y.
Угловой коэффициент: − 3
пересечение с осью Y: 4
Любую прямую можно построить при двух точек. Выберем два значения
x и подставим их в уравнение, чтобы определить соответствующие значения y .
x \y
0 \4
1 \1
Построим прямую с углового коэффициента и пересечения с осью Y или опираясь на две точки прямой.
Угловой коэффициент: − 3
пересечение с осью Y: 4
x\ y
0\ 4
1 \1
Объяснение: