Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2. Отсюда Площадь равна (1/2)c·(c/2)=c^2/4. В нашем случае c=13, S_(max)=169/4=42,25. Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,
Примите мои соболезнования в связи с кончиной задачи
Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2. Отсюда Площадь равна (1/2)c·(c/2)=c^2/4. В нашем случае c=13, S_(max)=169/4=42,25. Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,
Примите мои соболезнования в связи с кончиной задачи
уравнение не может иметь 1корень
Объяснение:
х²-2ах+6х-36=0
х²+х(-2а+6)-36=0
Д=(-2а+6)²-4*1*(-36)=
=4а²+36-24а+144=
=4а²-24а+180
уравнение имеет 1 корень,если Д=0
то есть 4а²-24а+180=0 |:4
а²-6а+45=0
Д=(-6)²-4*1*45=36-180<0→ нет корней