Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = -3x + 6
Таблица:
х -1 0 1
у 9 6 3
2) Выяснить, проходит ли график функции через точку M(-20; 66)
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
4) у=х2+6х+17+с Одна общая точка с осью ОХ, это значит один нуль функции, значит один корень уравнения х2+6х+17+с=0, а это значит, что Д=0 Д=36-4(17+с) = 36-68-4с = -32-4с -32-4с =0 4с=-32 | :4 c=-8 при этом исходная функция имеет только одну общую точку с осью Ох.
у=х2+6х+9
График - парабола, ветви вверх Найдем вершину В(х;у) х(в) = -6/2 = -3 у(в) = 9-18+9=0 В(-3;0) - вершина - единственный ноль функции
Чертим систему координат, стрелками отмечаем положительное направление , подписываем оси (х - вправо и у- вверх), отмечаем начало координат - точку О и отмечаем единичные отрезки по обеим осям. Отмечаем точку В в этой системе координат; далее пунктиром чертим новую систему координат относительно точки В и этой "новой системе координат" строим по точкам параболу у=х2.
1) В таблицах значений.
2)Да, проходит.
Объяснение:
1) Построить график функции y = -3x + 6.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
y = -3x + 6
Таблица:
х -1 0 1
у 9 6 3
2) Выяснить, проходит ли график функции через точку M(-20; 66)
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
M(-20; 66) y = -3x + 6
66= -3*(-20)+6
66= 60+6
66=66, проходит.