Все функции - параболы вида
a - определяет "ширину" ветвей, при 0<а<1 ветви "шире", при а > 1 "уже"
При отрицательном а - ветви направлены вниз, при положительном вверх. В 3 и 4 примерах а = -1, поэтому ветки вниз
b - (в данных примерах не используется) показывает смещение вершины параболы вдоль оси OX, положительный левее, отрицательный правее от оси OY
с - смещение вершины графика вдоль оси OY - положительный с - выше, отрицательный ниже, при с=0 ветка графика пересекает точку 0,0
Объяснение:
A cos²x + B sin x cos x + C sin²x = sin²x + cos²x
Переносишь из правой части в левую
E cos²x + B sin x cos x + F sin²x = 0 | :cos²x ( или sin²x)
Удобнее будет, если в итоге получиться tg x, значит делим на sin²x
E tg²x + B tg x + F = 0
tg x = t
Et² + Bt + F = 0
А дальше дискриминант, или как там удобнее (Я т.Виета пользуюсь)
Получаем корни t, допустим t = H ; O
Приравниваем наш tg x к корням
tg x = H или tg x = O
Это решить уже не составит труда
x = arctg(H) +
x = arctg(O) +
Само собой, если tg = 1, то это
Это я общее привёл