Объяснение: y=f(x)
1) D(f) . Область определения - это множество значений "х", на котором задаётся функция . Если задан график, то, чтобы определить ООФ, надо все точки, лежащие на графике, спроектировать на ось ОХ. Полученное множество и будет ООФ.
Все точки данного графика проектируются на все точки оси ОХ. То есть получаем множество всех действительных чисел.
P.S. Множество значений функции E(f) - это значения, которые может принимать переменная "у" . Чтобы найти E(f) по графику, надо проектировать точки графика на ось ОУ. Для изображённой функции E(f)=[ -2; 2 ] .
2) Точка пересечения с осью ОХ - (0,0). Эта же точка (0,0)- точка пересечения с осью ОУ.
3) Функция возрастает на промежутке [ -3; 3 ] , х∈[ -3;3 ]. Если вести карандашом по графику от точки (-3,-2) до точки (3,2), то карандаш движется вверх, функция возрастает.
Промежутков убывания нет (нет участков, на которых карандаш движется вниз) .
P.S. Есть промежутки постоянства функции (где карандаш движется по прямой), это участки х∈(-∞ -3] и х∈[ 3,+∞).
4) Нули функции - это значения "х", при которых "у" обращается в 0 . Для изображённой функции - это х=0 (см. пункт 2). То есть f(0)=0.
5) Наибольшее значение функции - это у=2 , наименьшее значение функции - это у= -2 ( cм. пункт 1 , P.S. )
√(x-1)
x-1>0
x>1
D(y)=(1; +∞) - область определения функции
2) √(x-1) +√(x+3)=2
x-1≥0
x≥1
x+3≥0
x≥ -3
ОДЗ: х≥1
(√(x-1))² = (2-√(x+3))²
x-1=4-4√(x+3) +x+3
4√(x+3) = x-x+7+1
4√(x+3)=8
(√(x+3))² = 2²
x+3=4
x=1 ≥1
ответ: 1
3) √(2x²+5x+11) ≥3
2x²+5x+11≥9
2x²+5x+11-9≥0
2x²+5x+2≥0
f(x)=2x²+5x+2 - парабола, ветви вверх
2x²+5x+2=0
D= 25-4*2*2=9
x₁= -5-3 = -2
4
x₂ =-5+3 = -0.5
4
+ - +
-2 -0.5
x∈(-∞; -2]U[-0.5; +∞)