Проекцией точки Р на прямую 4х - 3у - 7 = 0 является точка пересечения этой прямой с перпендикулярной ей прямой, проходящей через точку Р. Уравнение прямой, перпендикулярной данной: 3х + 4у + С = 0. Находим значение коэффициента С из условия, что прямая 3х + 4у + С = 0 проходит через точку Р (3; 4): 3·3 + 4·4 + С = 0 С = -25 Т. е. уравнение прямой, перпендикулярной данной будет: 3х + 4у - 25 = 0. Чтоб найти точку пересечения прямых 4х - 3у - 7 = 0 и 3х + 4у - 25 = 0, решаем систему из двух линейных уравнений:
Её решением будет точка с координатами (). Эта точка и есть искомой проекцией.
;6х^2+23x+21=0; D=529-504=25;х1=-3/2;х2=-7/3;
6х^2+23х+21=6(х+3/2)(х+7/3)=(2х+3)(3х+7)
ОДЗ:3х+7>0;3х+7 не=1;2х+3>0;2х+3 не=1;
Получим :log{3x+7}(2x+3)^2+log{2x+3}(2x+3)(3x+7)=4
2log{3x+7}(2x+3)+1+log{2x+3}(3x+7)=4
Пусть log{3x+7}(2x+3)=y,тогда получим уравнение:
2у+1+1/у=4.Умножим на у,получим 2у^2-3у+1=0;D=9-8=1;у1=1;у2=1/2;
Тогда:log{3x+7}(2x+3)=1 или log{3x+7}(2x+3)=1/2.
2х+3=3х+7 или 2х+3=(3х+7)^1/2.Изпервого уравнения получим х=-4-не удовлетворяет ОДЗ.
Извторого уравнения :(2х+3)^2=3x+7;4х^2+12х+9=3х+7;
4х^2+9х+2=0;D=81-32=49;х1=(-9-7)/8=-2;х2=(-9+7)/8=-1/4.х1 не удовлетворяет ОДЗ.ответ-1/4