(0;5)
Объяснение:
Пересекаясь с осью Оу значение аргумента х принимает значение равное нулю (то есть x₀=0) - это есть координата x точки пересечения с осью Оу. Теперь поставим x₀=0 в уравнение для игрек (y(x) = -2x+5) и найдём координату y₀ этой точки:
y(0) = -2*0+5 = 5
Следовательно, координата y₀ точки пересечения графика функции с осью Оу:
у₀=5
Тогда координаты точки пересечения графика функции y(x) с осью Оу можно записать как:
(0;5)
Это и есть ответ.
Могу порешать тебе задачи на сам. работе или даже на контрольной (не бесплатно, конечно, но могу :) Цены не заоблачные, а вполне приемлемые (от 20 до 300 рублей за задачу - всё зависит отеё сложности и объёмности). Если интересно, пиши лично мне в ВК: /evgeni_yan . Заходи в мою группу ВК - /club201004178, там ссылка на YouTube-канал, на котором я разбираю всякие задачи, поясняю как их решать и тп.
Объяснение: ОДЗ:
{х + 7 ≥0, х + а ≥ 0;
{х ≥ -7, х ≥ -а.
Рассмотрим 2 случая:
1) если а = 7, то имеем уравнение: √(х + 7) = х + 7. Обе части возведем в квадрат:
Х + 7 = (х + 7)²; (х + 7)(х+6)=0;;
откуда х1 = -7, х2 = -6.
2) если х + 7 > 0 (х > -7, а > 7). Решения найдем, предварительно возведя обе части в квадрат:
(√(х+а) )² = (х + 7)²;
х + а = х² + 14х + 49;
х² + 13х + 49 - а = 0.
Уравнение - квадратное. Ищем дискриминант:
D = 13² - 4(49 - a) = 169 - 196 + 4a = 4a - 27.
Вновь рассматриваем три случая:
1) 4a - 27 < 0; 4a < 27; a < 6,75 - при таких значениях параметра корней нет.
2) 4а - 27 = 0; а = 6,75 - при таком значении параметра корень единственный и он равен х = -13/2 = -6,5.
3) 4а - 27 > 0 (а > 6,75). Тогда имеем два корня:
Х1 = (-13 + √(4а - 27))/2 = -6,5 + √(а - 6,75).
Х2 = (-13 -√(4а - 27) = -6,5 - √(а - 6,75).
Объединяем все полученные нами результаты и записываем ответ.
ОТВЕТ: если а < 6,75, то корней нет; если а = 7, то х1 = -7, х2 = -6; если а = 6,75, то х = -6,5; если а є (6,75; 7)∪(7; + ∞), то х1 = -6,5 + √(а - 6,75), х2 = -6,5 - √(а - 6,75).