М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ксееее
Ксееее
14.07.2021 07:28 •  Алгебра

Помагите )
sin²x + sin²3x= sin²2x + sin²4x​

👇
Открыть все ответы
Ответ:
soymapoIina
soymapoIina
14.07.2021
(1) Основное тригонометрическое тождествоsin2(α) + cos2(α) = 1(2) Основное тождество через тангенс и косинус1 + tg^2(\alpha) = \frac{1}{cos^2(\alpha)}1+tg​2​​(α)=​cos​2​​(α)​​1​​(3) Основное тождество через котангенс и синус1 + ctg^2(\alpha) = \frac{1}{sin^2(\alpha)}1+ctg​2​​(α)=​sin​2​​(α)​​1​​(4) Соотношение между тангенсом и котангенсомtg(α)ctg(α) = 1(5) Синус двойного углаsin(2α) = 2sin(α)cos(α)(6) Косинус двойного углаcos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α)(7) Тангенс двойного углаtg(2α) =  2tg(α)1 – tg2(α)(8) Котангенс двойного углаctg(2α) =ctg2(α) – 1  2ctg(α)(9) Синус тройного углаsin(3α) = 3sin(α)cos2(α) – sin3(α)(10) Косинус тройного углаcos(3α) = cos3(α) – 3cos(α)sin2(α)(11) Косинус суммы/разностиcos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β)(12) Синус суммы/разностиsin(α±β) = sin(α)cos(β) ± cos(α)sin(β)(13) Тангенс суммы/разностиtg(\alpha\pm\beta) = \frac{tg(\alpha) ~ \pm ~ tg(\beta)}{1 ~ \mp ~ tg(\alpha)tg(\beta)}tg(α±β)=​1 ∓ tg(α)tg(β)​​tg(α) ± tg(β)​​(14) Котангенс суммы/разностиctg(\alpha\pm\beta) = \frac{-1 ~ \pm ~ ctg(\alpha)ctg(\beta)}{ctg(\alpha) ~ \pm ~ ctg(\beta)}ctg(α±β)=​ctg(α) ± ctg(β)​​−1 ± ctg(α)ctg(β)​​(15) Произведение синусовsin(α)sin(β) = ½(cos(α–β) – cos(α+β))(16) Произведение косинусовcos(α)cos(β) = ½(cos(α+β) + cos(α–β))(17) Произведение синуса на косинусsin(α)cos(β) = ½(sin(α+β) + sin(α–β))(18) Сумма/разность синусовsin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β))(19) Сумма косинусовcos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β))(20) Разность косинусовcos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))(21) Сумма/разность тангенсовtg(\alpha) \pm tg(\beta) = \frac{sin(\alpha\pm\beta)}{cos(\alpha)cos(\beta)}tg(α)±tg(β)=​cos(α)cos(β)​​sin(α±β)​​(22) Формула понижения степени синусаsin2(α) = ½(1 – cos(2α))(23) Формула понижения степени косинусаcos2(α) = ½(1 + cos(2α))(24) Сумма/разность синуса и косинусаsin(\alpha) \pm cos(\alpha) = \sqrt{2}sin(\alpha\pm\frac{\pi}{4})sin(α)±cos(α)=√​2​​​sin(α±​4​​π​​)(25) Сумма/разность синуса и косинуса с коэффициентамиAsin(\alpha) \pm Bcos(\alpha) = \sqrt{A^2+B^2}(sin(\alpha \pm arccos(\frac{A}{\sqrt{A^2+B^2}})))Asin(α)±Bcos(α)=√​A​2​​+B​2​​​​​(sin(α±arccos(​)))(26) Основное соотношение арксинуса и арккосинусаarcsin(x) + arccos(x) = π/2(27) Основное соотношение арктангенса и арккотангенсаarctg(x) + arcctg(x) = π/2

Формулы общего вида(1) Формула понижения nй четной степени синусаsin^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\frac{n}{2}-k} C_{k}^{n}cos((n-2k)\alpha)sin​n​​(α)=​2​n​​​​C​​2​​n​​​n​​​​+​2​n−1​​​​1​​∑​k=0​​2​​n​​−1​​(−1)​​2​​n​​−k​​C​k​n​​cos((n−2k)α)(2) Формула понижения nй четной степени косинусаcos^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} C_{k}^{n}cos((n-2k)\alpha)cos​n​​(α)=​2​n​​​​C​​2​​n​​​n​​​​+​2​n−1​​​​1​​∑​k=0​​2​​n​​−1​​C​k​n​​cos((n−2k)α)(3) Формула понижения nй нечетной степени синусаsin^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\frac{n-1}{2}-k} C_{k}^{n}sin((n-2k)\alpha)sin​n​​(α)=​2​n−1​​​​1​​∑​k=0​​2​​n−1​​​​(−1)​​2​​n−1​​−k​​C​k​n​​sin((n−2k)α)(4) Формула понижения nй нечетной степени косинусаcos^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} C_{k}^{n}cos((n-2k)\alpha)cos​n​​(α)=​2​n−1​​​​1​​∑​k=0​​2​​n−1​​​​C​k​n​​cos((n−2k)α)
4,7(28 оценок)
Ответ:
marktopskiy34567
marktopskiy34567
14.07.2021
1.
1) Наверное, здесь опечатка? y = x^3 и y = √(x^3)
Найдем точки их пересечения.
x^3 = √(x^3)
x1 = 0;
делим все на √(x^3)
√(x^3) = 1; x2 = 1
Находим площадь
Интеграл (0,1) (x^(3/2) - x^3) dx = [ 2/5*x^(5/2) - x^4/4 ] | (0, 1) =
= 2/5 - 1/4 - 0 = 0,4 - 0,25 = 0,15
2) Найдем точки их пересечения.
-x^2 + 4 = 4 - x
x^2 - x = 0
x1 = 0; x2 = 1
Находим площадь
Интеграл (0,1) (-x^2 + 4 - 4 + x) dx = Интеграл (0,1) (-x^2 + x) dx =
= [ -x^3/3 + x^2/2 ] | (0,1) = -1/3 + 1/2 - 0 = 1/6
3)  Найдем точки их пересечения.
x^2 = 4; x1 = -2; x2 = 2
Находим площадь
Интеграл (-2, 2) (4 - x^2) dx = [ 4x - x^3/3 ] | (-2, 2) = (4*2 - 8/3) - (-4*2 + 8/3) =
= 8 - 8/3 + 8 - 8/3 = 16 - 16/3 = (48 - 16)/3 = 32/3
4) Касательная к параболе y = -x^2+2x в точке x0 = 0,5 - это прямая
f(x) = y(0,5) + y'(0,5)*(x - 0,5) = (-0,25+1) + (-1+2)*(x - 0,5) = x + 0,25.
Пределы интегрирования: x1 = 0 (ось Oy) и x2 = 0,5
Находим площадь
Интеграл (0; 0,5) (x+0,25-(-x^2+2x)) dx = Интеграл (0; 0,5) (x^2-x+0,25) dx =
= [ x^3/3 - x^2/2 + 0,25x ] | (0; 0,5) = 0 - ((1/8)/3 - (1/4)/2 + 1/4*1/2) = -1/24
5) Интеграл (-2, 2) (√(-x+2) - x^3) dx = [ -2/3*(-x+2)^(3/2) - x^4/4 ] | (-2, 2) =
= -2/3*0^(3/2) - (-2)^4/4 - (-2/3*4^(3/2) - 2^4/4) = 0 - 4 + 2*8/3 + 4 = 16/3

2. Интеграл (-1, 0) (x^2 - 2x)(3 - 2x)/(x-2) dx = Интеграл (-1, 0) x(3 - 2x) dx =
= [ 3x^2/2 - 2x^3/3] | (-1, 0) = 0 - (3*1/2 - 2(-1)/3) = -3/2 - 2/3 = -13/6

3. Интеграл (0,1) (2x+3)/(2x+2) dx = Интеграл (0,1) (1 + 1/(2x+2)) dx =
= [x + 1/2*ln|2x+2| ] | (0, 1) = (0 + 1/2*ln 2) - (1 + 1/2*ln 4) =
= -1 + 1/2*(ln 2 - ln 4) = -1 + 1/2*ln(2/4) = -1 + 1/2*ln(1/2) = -1 - 1/2*ln 2
4,7(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ