1. Функция задана формулой у= -3х + 3. Определите: 1) значение функции, если значение аргумента равно 3; 2) значение аргумента, при котором значение функции равно 5; 3) проходит ли график функции через точку B(-1; 5).
1) Скорость плота равна скорости течения,то есть 4 км/ч.
Время,за которое плот проплыл равно t=s:v=44км:4км/ч=11ч.
Яхта отправилась через час после отплытия плота,следует он затратила на весь путь на 1 час меньше,то есть 10ч.
Путь пройденный яхтой равняется s=96км*2=192км.
Составляем уравнение:
x-скорость яхты.
(96:x+4)+(96:x-4)=10
(x+4)(x-4)-под общий знаменатель.
Преобразовав получишь такое уравнение:
10x^2-192*x-160=0
D=208
x1=20
x2=-0,8 (не удовлетворяет условию)
Следует скорость яхты в неподвижной воде равна 20км/ч
ответ:20км/ч
2) По условию 2a+2b=56 (1), a^2+b^2=27^2 (2). возведем (1) в квадрат, а (2) умножим на 4, получаем 4a^2+8ab+4b^2=3136, 4a^2+4b^2=2916 вычитаем из первого второе, получаем 8ab=220, тогда S=ab=220/8=27,5
3) У равно бедренных треугольников медиана, бесиктриса и высота - один и тот же отрезок который падает в середину основания, так то медиана=бесиктриса=высота. Это и есть доказательство.
Дана функция y=x³-3x²+4. 1. Область определения функции: х ∈ (-∞, ∞). 2. Четность, нечетность функции проверяем с соотношений f = f(-x) и f = -f(-x). x^{3} - 3 x^{2} + 4 = - x^{3} - 3 x^{2} + 4. - Нет. x^{3} - 3 x^{2} + 4 = - -1 x^{3} - - 3 x^{2} - 4. - Нет. Значит, функция не является ни чётной, ни нечётной. 3. Координаты точек пересечения графиков функции с осью Ох и осью Оy. График функции пересекает ось X при f = 0 значит надо решить уравнение x³ - 3 x² + 4 = 0. Решаем это уравнение Точки пересечения с осью X: Аналитическое решение даёт 3 действительных корня (из них 2 одинаковых): х = 2 и х = -1. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x³ - 3x² + 4. 0³ - 3*0² + 4. Результат: f(0) = 4. Точка (0, 4). 4. Промежутки возрастания убывания функции, экстремумы функции. Для того, чтобы найти экстремумы, нужно решить уравнение \frac{d}{d x} f{\left (x \right )} = 0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: \frac{d}{d x} f{\left (x \right )} = Первая производная 3 x^{2} - 6 x = 0. Корни этого уравнения x_{1} = 0. x_{2} = 2. Значит, экстремумы в точках: (0, 4) (2, 0)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках x_{2} = 2. Максимумы функции в точках x_{2} = 0. Убывает на промежутках (-oo, 0] U [2, oo) Возрастает на промежутках [0, 2] 5. Промежутки выпуклости функции Найдем точки перегибов, для этого надо решить уравнение \frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: \frac{d^{2}}{d x^{2}} f{\left (x \right )} = Вторая производная 6 \left(x - 1\right) = 0. Корни этого уравнения x_{1} = 1. Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках [1, oo). Выпуклая на промежутках (-oo, 1]. 6. асимптоты графика - не имеет. 7. Построение графика - дан в приложении.
1) Скорость плота равна скорости течения,то есть 4 км/ч.
Время,за которое плот проплыл равно t=s:v=44км:4км/ч=11ч.
Яхта отправилась через час после отплытия плота,следует он затратила на весь путь на 1 час меньше,то есть 10ч.
Путь пройденный яхтой равняется s=96км*2=192км.
Составляем уравнение:
x-скорость яхты.
(96:x+4)+(96:x-4)=10
(x+4)(x-4)-под общий знаменатель.
Преобразовав получишь такое уравнение:
10x^2-192*x-160=0
D=208
x1=20
x2=-0,8 (не удовлетворяет условию)
Следует скорость яхты в неподвижной воде равна 20км/ч
ответ:20км/ч
2) По условию 2a+2b=56 (1), a^2+b^2=27^2 (2). возведем (1) в квадрат, а (2) умножим на 4, получаем 4a^2+8ab+4b^2=3136, 4a^2+4b^2=2916 вычитаем из первого второе, получаем 8ab=220, тогда S=ab=220/8=27,5
3) У равно бедренных треугольников медиана, бесиктриса и высота - один и тот же отрезок который падает в середину основания, так то медиана=бесиктриса=высота. Это и есть доказательство.