ответ: 9 + 9 = 18.
Число 18 можно представить в виде двух неотрицательных слагаемых несколькими .
Нетрудно догадаться, что поиск варианта суммы, при котором сумма их кубов была бы наименьшей следует начать с выражения 9 + 9, а потом проверить ближайшие к значения при увеличении первого слагаемого на 1 и уменьшении второго на 1.
9 ^ 3 = 729.
729 + 729 = 1458.
Проверяем вариант суммы 10 + 8.
10 ^ 3 + 8 ^ 3 = 1000 + 512 = 1512.
1512 > 1458.
Проверяем вариант 11 + 7.
11 ^ 3 + 7 ^ 3 = 1331 + 343 = 1674.
1674 > 1458.
Куб числа 12 составит 1728, а значит проверку можно закончить, так как куб одно из слагаемых будет больше суммы двух кубов числа 9.
Наше предположение оказалось верным и сумма кубов слагаемых в выражении 9 + 9 + 18 будет наименьшей.
Объяснение:
x^2+y^2=29 умножим на 4
получим 4x^2+4y^2=116 =>
y^2-4x^2=9
+
4x^2+4y^2=116
y^2+4y^2+4x^2-4x^2=9+116
сократим ( 4x^2 - 4x^2 ) => y^2+4y^2=125
5 y^2=125 поделим на пять
y^2= 25
y=+- 5
если y= -5, то (-5)^2 - 4x^2 = 9
25 - 4x^2=9
-4x^2 = 9-25
-4x^2= - 16 умножим на минус один
4x^2=16 делим на четыре
x^2=4
x= +-2
если y= 5, то 5^2 - 4x^2 = 9
25 - 4x^2=9
-4x^2 = 9-25
-4x^2= - 16 умножим на минус один
4x^2=16 делим на четыре
x^2=4
x= +-2
ответ: 1) x=2, y=5
2) x= -2, y=5
3)x= -2, y= -5
4) x=2, x= -2, y= -5
1) , функция равна константе. Для нашего примера это можно описать тем, что ученик находится в школе, то есть время идет, а расстояние от дома не меняется.
2) – прямая пропорциональность. Мы помним, что в зависимости от значения k функция может возрастать или убывать. Вспомним графики первых двух функций, для примера построим графики функций , , :
Объяснение: