Путь длиной 34 км первый велосипедист проезжает на 50 минут дольше второго. Найдите скорость второго велосипедиста, если известно, что она на 5 км/ч больше скорости первого.
Обозначим время поездки 2 велосипедиста (дальше в.) за t; тогда время 1 в. = t+50 мин=t+50/60 часов=t+5/6 часов. Значит, можно узнать скорость из формулы v=S/t: v1=34/(t+5/6) км/ч, а v2=34/t км/ч, причем v1+5=v2
Составим уравнение:
34/(t+5/6)+5=34/t
34/t - 34/(t+5/6)=5
(34t+170/6-34t)/(t^2+5/6t)=5 здесь приводим к общему знаменателю
170/6=5t^2+25/6t домножаем знаменатель на 5, чтобы избавиться от лишнего слагаемого
5t^2+25/6t-170/6=0
30t^2+25t-170=0 домножили на 6, чтобы избавиться от дробей
решаем квадратное уравнение и получаем, что t=2 или -170/6. Но время отрицательным быть не может, поэтому получаем что t=2
Тогда можем найти скорость 2 в. (по формуле v=S/t)=34/2=17 км/ч
Все очень просто: если угол от 0 до 90 градусов,то он принадлежит 1 четверти если угол от 90 до 180 градусов,то он принадлежит 2 четверти если угол от 180 до 270 градусов,то он принадлежит 3 четверти если угол от 270 до 360 градусов,то он принадлежит 4 четверти Это для положительных углов,для отрицательных углов все с точностью до наоборот: если угол от 0 до -90 градусов,то он принадлежит 4 четверти если угол от -90 до -180 градусов,то он принадлежит 3 четверти если угол от -180 до -270 градусов,то он принадлежит 2 четверти если угол от -270 до -360 градусов,то он принадлежит 1 четверти Отсчет угла ведется строго от нуля:против часовой если угол положительный,против-если отрицательный(рисунок) Если угол содержит в себе кол-во градусов большее чем 360,то можно эти 360 градусов убрать...четверть угла не изменится. В вашем случае: а)500-360=140(вторая четверть,т.к. 90<140<180) б)-1290+(да-да складывание,т.к. угол отрицательный)360*3=-210(вторая четверть,т.к.-270<-210<-180,не забываем про отстчет против часовой стрелки) в)1140-360*3=60(первая четверть)
План действий такой: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) полученные корни ставим на числовой прямой и определяем знак производной на каждом участке 4) делаем выводы: а) где плюс, там возрастание, где минус - убывание, точка, при переходе через которую производная меняет знак с + на -, это точка максимума, наоборот - точка минимума. начали? 1) производная равна(-2х(х +2) - ( 3 - х²)·1)/(х + 2)² 2) ( -2х² - 4х - 3 + х² )/(х + 2)² = 0 | ·(х + 2 ) ≈ 0 -2х² - 4х -3 +х² = 0 -х² -4х -3 = 0 х² + 4х + 3 = 0 х1 = -1; х2 = -3 3) -∞ + -3 - -1 + +∞ 4) функция возрастает при х∈( -∞; -3)∨(-1; +∞) функция убывает при х ∈(-3; -1) х = -3 точка мак4симума х = -1 точка минимума.
ответ: 17 км/ч
Объяснение:
для наглядности составим таблицу:
t (время) v (скорость) S (расстояние)
1 велосипедист t+5/6ч 34/(t+5/6) км/ч 34 км
2 велосипедист t ч 34/t км/ч 34км
Обозначим время поездки 2 велосипедиста (дальше в.) за t; тогда время 1 в. = t+50 мин=t+50/60 часов=t+5/6 часов. Значит, можно узнать скорость из формулы v=S/t: v1=34/(t+5/6) км/ч, а v2=34/t км/ч, причем v1+5=v2
Составим уравнение:
34/(t+5/6)+5=34/t
34/t - 34/(t+5/6)=5
(34t+170/6-34t)/(t^2+5/6t)=5 здесь приводим к общему знаменателю
170/6=5t^2+25/6t домножаем знаменатель на 5, чтобы избавиться от лишнего слагаемого
5t^2+25/6t-170/6=0
30t^2+25t-170=0 домножили на 6, чтобы избавиться от дробей
решаем квадратное уравнение и получаем, что t=2 или -170/6. Но время отрицательным быть не может, поэтому получаем что t=2
Тогда можем найти скорость 2 в. (по формуле v=S/t)=34/2=17 км/ч