М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1234554321111
1234554321111
10.01.2022 04:31 •  Алгебра

Расстояние между мотоциклист проезжает за 2ч, а велосипедист за 5ч. скорость велосипедиста на 18км/ч мешьне скорости мотоциклиста. найдите скорости велосипедиста и мотоциклиста и расстояние между

👇
Ответ:
pocemonpickachu
pocemonpickachu
10.01.2022
Х - это скорость мотоциклиста, (х-18) - это скорость велосипедиста.
2х=5(х-18)
2х=5х-5*18
2х=5х-90
90=5х-2х
90=3х
х=90/3
х=30(км/ч) скорость мотоциклиста,
30-18=12(км/ч) скорость велосипедиста,
30*2=60(км) расстояние между городами
4,4(11 оценок)
Открыть все ответы
Ответ:
dmitry113114
dmitry113114
10.01.2022
х² - 3х + у²+ 3 > 0; поскольку число у, возведенное в квадрат больше (или равно при у=0) нуля, то есть число положительное при всех у, то рассмотрим неравенство: х² - 3х + 3 > 0; если оно будет верно, то и верно исходное неравенство х² - 3х + у²+ 3 > 0 x² − 3x + 3 > 0 Сначала решаем квадратное уравнение x² − 3x + 3 = 0. Вот коэффициенты данного квадратного уравнения: a = 1, b = − 3, c = 3. Его дискриминант D = b² − 4ac = (− 3) ² − 4 · 1 · 3 = − 3 Поскольку дискриминант D квадратного уравнения меньше 0, то уравнение не имеет действительных корней, и при любом x левая часть будет либо больше, либо меньше нуля; если a > 0, то при любом х всё выражение будет больше нуля; если a < 0, то при любом х всё выражение будет меньше нуля. В нашем уравнении a=1; > 0, поэтому выражение x² − 3x + 3 всегда будет больше нуля при любом x. Следовательно, наше неравенство x² − 3x + 3 > 0 верно при любом x.
4,7(43 оценок)
Ответ:
fdnk1
fdnk1
10.01.2022
|x-12|=a^2-5a+6

Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения   а. По определению модуля числа

|A|= \left\{\begin{array}{ccc}A,\; esli\; A\ \textgreater \ 0\\0,\; esli\; A=0\\-A,\; esli\; A\ \textless \ 0\end{array}\right.

По теореме Виета  a^2-5a+6=0  при  a_1=2,\; a_2=3 .
Поэтому |x-12|=x-12=0\; \to \; x=12 .
Знаки квадратного трёхчлена:  + + + (2) - - - (3) + + + 

 a^2-5a+6\ \textgreater \ 0\; \; \to \; \; a\in (-\infty ,2)\cup (3,+\infty ) 
В этом случае получаем два решения (при  x>12  и при х<12) .
А если a^2-5a+6\ \textless \ 0 , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае  a\in (2,3) .
ответ:  уравнение имеет одно решение при а=2 и а=3;
             уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
             уравнение не имеет решений при а∈(2,3) .

 
4,5(86 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ