Выясним вид и расположение графика функции y=-x²+4 относительно начала координат. График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны. Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной. -х²+4=0; х²=4 → х=√4 Корнями будут х₁=-2, х₂=2 Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2. В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0. Значение максимума у(0) равно -0²+4 = 4. Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2. В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞)
Если нужно посчитать вероятность нескольких событий, все из которых должны произойти (т.е. должно произойти и первое, и второе, и третье, и т.д.), то нужно умножить вероятности всех этих событий. Если нужно посчитать вероятность нескольких событий, хотя бы одно из которых должны произойти (т.е. должно произойти или первое, или второе, или третье, и т.д.), то нужно сложить вероятности всех этих событий. В нашем случае должны произойти все события: 1 выстрел - попал, 2-ой выстрел - попал, 3-ий выстрел - не попал, 4-ый выстрел - не попал. Вероятность того, что стрелок промахнется, т.е. не попадет P=1-0,6=0,4. Тогда: P=0,6*0,6*0,4*0,4=0,0576 ответ: 0,0625
График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны.
Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y
Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной.
-х²+4=0; х²=4 → х=√4
Корнями будут х₁=-2, х₂=2
Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2.
В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0.
Значение максимума у(0) равно -0²+4 = 4.
Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2.
В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞)
График функции дан во вложении.