Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
производительность первого станка Х,тогда 120 дет. штампуют за время t1=120/x
производительность первого станка Y,тогда 120 дет. штампуют за время t2=120/y
по условию
t2 - t1 = 1 ч
120/y - 120/x = 1
1/y -1/x =1/120 (1)
а также На двух станках штамповали 1300 деталей за 13 ч.
13 * (x+y) = 1300
x+y = 100 ; y = 100 -x (2)
решим систему уравнений (1)(2)
1/(100-x) -1/x =1/120
120 (x - (100-x)) = x(100-x)
x^2 +140x - 12000 =0
D = 140^2 - 4*1*(-12000) =67600
√D = -/+ 260
x1 = 1/2 (-140 -260) = -200 отрицательное значение не подходит
x2 = 1/2 (-140 +260) = 60
ответ
на первом станке штампуют 60 дет/час