Доведення 1.
0=0
10−10=15−15
10−6−4=15−9−6
2(5−3−2)=3(5−3−2)
скорочуємо одинакові множники
2=3
2+2=3+2
2+2=5
Доведення 2.
1=1
4
4
=
5
5
4·
1
1
=5·
1
1
оскільки
1
1
=
1
1
, то 4=5
А звідси 2+2=5
Доведення 3.
−20=−20
16−36=25−45
16−36+20.25=25−45+20.25
(4−4.5)2=(5−4.5)2
4−4.5=5−4.5
4=5
2+2=5
Доведення 4.
a=b
ab=b2
ab−a2=b2−a2
a(b−a)=(b+a)(b−a)
a=b+a, оскільки b=a, то
a=a+a
a=2a
1=2
звідси очевидним чином випливає, що
1=2 ⇒ 1+3=2+3 ⇒ 4=5 ⇒ 2+2=5
Доведення 5 (для тих хто вчив вищу математику).
Візьмемо інтеграл частинами згідно формул інтегрування частинами:
∫
1
x
dx=[\tableu=
1
x
;du=−
1
x2
dx;dv=dx;v=x]=
1
x
x−∫−
1
x2
xdx=1+∫
1
x
dx
Нехай ∫
1
x
dx=θ, тоді
θ=1+θ
0=1 ⇒ 0+4=1+4 ⇒ 4=5 ⇒ 2+2=5
x+4y=9 |*(-2) => -2x-8y=-18 => x=3
3x+8y=21 |*1 => 3x+8y=21 => y=1,5
Сложив уравнения, получим х=3
ответ: (3; 1,5)
2)
3x+y=264 |*5 => 15x+5y=1320 => x=80
2x-5y=40 |*1 => 2x-5y=40 => y=24
Сложив уравнения, получим 17х=1360 => x=80
ответ: (80; 24)
3) Умножим второе уравнение на 10
x+y=4100 |*(-8) => -8x-8y= -32800 => x=2800
8x+11y=36700 |*1 => 8x+11y=36700 => y=1300
Сложив уравнения, получим 3y=3900 => y=1300
ответ: (2800; 1300)