Пусть скорость на второй половине пути х, тогда на первой половине пути х+3.Время первой половины пути: 45/(х+3), время второй половины пути: 45/х. Составим и решим уравнение: 45/(х+3) + 45 /х = 5,5, ПРиведём к общему знаменателю: 45х + 45х + 135 = 5,5х²+16,5х -5,5х²+ 73,5х + 135 =0, умножим на (-2) 11х² - 147х - 270 = 0, D = 147²-4*11*(-270) = 33489= 183² х=- 18/11 - не подходит по условию задачи. х = 15. Итак, скорость на второй половине равна 15 км/ч.
Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
тогда на первой половине пути х+3.Время первой половины пути: 45/(х+3), время второй половины пути: 45/х.
Составим и решим уравнение: 45/(х+3) + 45 /х = 5,5,
ПРиведём к общему знаменателю:
45х + 45х + 135 = 5,5х²+16,5х
-5,5х²+ 73,5х + 135 =0, умножим на (-2)
11х² - 147х - 270 = 0,
D = 147²-4*11*(-270) = 33489= 183²
х=- 18/11 - не подходит по условию задачи.
х = 15.
Итак, скорость на второй половине равна 15 км/ч.