1. Дано: |y=3x-1 |x+2y=5 Решение Подставим первое уравнение во второе:
Подставляем полученное значение в первое уравнение: y=3x-1, при x=1 y=3-1 y=2 ответ: (1;2)
2. Дано |x+5y=13 |3x-y=-9 Решение Выразим из первого уравнения переменную x: x=13-5y
Подставим полученное выражение во второе уравнение: 3*(13-5y)-y=-9 Раскроем скобки: 39-15y-y=-9 Перенесем неизвестное значение в левую часть, а константы в правую: -16y=-9-39 y=(-48)/(-16) y=3
Подставим полученное значение в первое преобразованное уравнение: x=13-5y, при y=3 x=13-5*3 x=13-15 x=-2
Уравнение касательной в точке х =а имеет вид
у = f(a) + f'(a)·(x - a)
f(a) = 2а² + 4а + 3
f'(х) = 4х + 4
f'(а) = 4а + 4 = 4(1 + а)
Известно, что у = 1 при х = 1, тогда
1 = 2а² + 4а + 3 + 4(1 + а)·(1 - а)
Решим уравнение относительно а
1 = 2а² + 4а + 3 + 4(1 - а²)
1 = 2а² + 4а + 3 + 4 - 4а²
2а² - 4а - 6 = 0
или
а² - 2а - 3 = 0
По теореме Виета сумма корней этого уравнения равна коэффициенту перед х с противоположным знаком, т.е. а₁ + а₂ = 2
ответ: сумма абсцисс точек касания равна 2.