Дана функция у= х^3+3х^2+5.
Находим производную и приравниваем 0.
3х² + 6х = 0 или 3х(х + 2) = 0.
Имеем 2 корня: х = 0 и х = -2.
Находим знаки производной на промежутках:
х = -3 -2 -1 0 3
y' = 9 0 -3 0 45
Как видим, в точке х = -2 максимум функции, а х = 0 это минимум.
Находим значения функции в точках экстремумов и на концах заданного промежутка.
х = -1 0 3
у = 7 5 59 .
ответ: на промежутке [ –1 ; 3 ] минимальное значение функции 5, а максимальное 59.
Для вычисления пары чисел которые будут решением этого уравнения мы применим один из решения системы уравнений:
5x - 3y = 0;
3y + 4x = 27.
Осмотрев оба уравнения системы мы лицезреем, что перед переменной y стоят в обеих уравнениях обоюдно противоположные коэффициенты.
Сложим почленно два уравнения системы и получим:
5x + 4x = 0 + 27;
y = (27 - 4x)/3.
Так же из второго уравнения мы выразили переменную y через x.
Решаем 1-ое уравнение системы:
9x = 27;
x = 27 : 9;
x = 3.
Система уравнений:
x = 3;
y = (27 - 4 * 3)/3 = (27 - 12)/3 = 15/3 = 5.
Объяснение:
Объяснение:
ответ: y'''=960x²-108=12*(80x²-9).