Пусть х - время в мин., которое требуется для выполнения работы второму принтеру, соответственно х-10 мин. - время которое требуется для выполнения работы первому принтеру. Тогда 1/х - доля работы которую делает второй за 1 минуту, соответственно 1/(x-10) -первый. Составляем уравнение: 1/x + 1/(x-10) = 1/12 - доля работы которую выполняют за 1 минуту оба принтера совместно. Решаем, получаем: х^2-34x+120=0, Дискриминант квадратного уравнения:D = b2 - 4ac = (-34)2 - 4·1·120 = 1156 - 480 = 676 Квадратное уравнение имеет два действительных корня: x1 = 34 - √6762·1 = 34 - 262 = 82 = 4 x2 = 34 + √6762·1 = 34 + 262 = 602 = 30, корень 4 - не походит, так как 4-10 мин. = - 6 мин, время выполнения работы не может быть отрицательным, соответственно время выполнения работы первым принтером: 30- 10 = 20 мин.
13 (км/час) - собственная скорость катера
Объяснение:
х - собственная скорость катера
х+3 - скорость по течению
х-3 - скорость против течения
48/(х+3) - время по течению
20/(х-3) - время против течения
По условию задачи на весь путь затрачено 5 часов, уравнение:
48/(х+3)+20/(х-3)=5 Избавляемся от дробного выражения, общий знаменатель (х+3)(х-3) или х²-9, надписываем над числителями дополнительные множители:
48(х-3)+20(х+3)=5(х²-9)
48х-144+20х+60=5х²-45
68х-84=5х²-45
-5х²+45+68х-84=0
-5х²+68х-39=0
5х²-68х+39=0
х₁,₂=(68±√4624-780)/10
х₁,₂=(68±√3844)/10
х₁,₂=(68±62)/10
х₁=0,6 - отбрасываем, как не отвечающий условию задачи
х₂=130/10=13 (км/час) - собственная скорость катера
Проверка:
48 : 16 = 3 (часа по течению)
20 : 10 = 2 (часа против течения)
Всего 5 часов, всё верно.