График функции — понятие в математике, которое даёт представление о геометрическомобразе функции.Наиболее наглядны графики вещественнозначных функций вещественного переменного.В этом случае, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией:точка располагается (или находится) на графике функции тогда и только тогда, когда .Таким образом, функция может быть адекватно описана своим графиком.Из определения графика функцииследует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции: никакая прямая, параллельная оси ординат, не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и тоже подмножество плоскости).График гладкой (требуемое количество раз дифференцируемой функции) является плоской кривой той же степени гладкости.При рассмотрении отображения произвольного вида , действующего из множества в множество , графиком функцииназывается следующее множество упорядоченных пар:В частности, при рассмотрении динамических систем, изображающая точка,представляет собою график решения соответствующего дифференциального уравнения.
1) x+7>4
x>4-7
x>-3
o>x
-3
2) 3-2х≤5
2х≥3-5
2х≥-2
х≥-1
.>x
-1
Вместе
-3
о.>x
-1
ответ: х≥-1; или х∈[-1; ∞).