Обозначим скорость теплохода в стоячей воде х км/ч. тогда его скорость по течению х+2 км/ч. На движение по течению он потратил 100/(х+2). А его скорость против течения х-2 км/ч. На движение против течения он потратил 64/(х-2). Получаем
100(x-2)+64(x+2)=9(x+2)(x-2) 100x-200+64x+128=9(x²-4) 164x-72=9x²-36 9x²-36-164x+72=0 9x²-164x+36=0 D=164²-4*9*36=25600 √D=160 x₁=(164-160)/18=4/18=2/9 - отбрасываем, так как при движении с такой скоростью теплоход не сможет плыть против течения x₂=(164+160)/18=324/18=18 ответ: скорость теплохода в стоячей воде 18 км/ч
F(x)=x³-x² Поведение на бесконечности: при х⇒-∞ y⇒-∞ при х⇒∞ y⇒∞
Точки пересечения с осью х: у=0 x³-x²=0 x²(x-1)=0 Произведение равно 0, когда хотя бы один из множителей равен 0 x₁=0 x₂-1=0 x₂=1 (0;0) (1;0)
Точки пересечения с осью у: х=0 у=0 (0;0)
Находим экстремуму функции. Производную приравниваем нулю y'=3x²-2x 3x²-2x=0 x(3x-2)=0 x₁=0 3x₂-2=0 x₂=2/3 Отмечаем найденные точки на числовой прямой и находим знак производной в интервалах + - + -----------------₀----------------₀-------------------> 0 2/3 Производна меняет знак с плюса на минус в точке х=0. Значит, это точка максимума. f(0)=0 Производна меняет знак с минуса на плюс в точке х=2/3. Значит, это точка минимума. f(2/3)=(2/3)³-(2/3)²=8/27-4/9=(8-4*3)/27=-4/27
Відповідь:
х2-11х+28=0
Пояснення:
Используем теорему Виета:
Если x₁, x₂ - корни квадратного уравнения x² + px + q = 0, то x₁ + x₂ = -p, x₁·x₂ = q
х1 = 7
х2= 4
х1+х2= 7+4=11
х1*х2=28
х2-11х+28=0