Попробую объяснить порядок решения задачи. Пусть одна труба запонит бассейн за Х часов, тогда вторая труба заполнит его за Х+6 часов. Известно что вместе две трубы заполнили его за 2 часа половину бассейна, значит за 2*2=4 часа они заполнят весь бассейн. Можно записать: 1/Х+1/(Х+6)=1/4. Левую часть приведём к общему знаменателю, получим (2Х+6)/(Х²+6)=1/4 или 8Х+24=Х²+6Х. Решаем квадратное уравнение: Х²-2Х-24=0; дискриминант D=4-4*(-24)=100, находим корни Х₁=(2-10)/2=-4 (нам не подходит, так как время не может быть отрицательным), Х₂=(2+10)/2=6 часов потребуется первой трубе наполнить бассейн. А второй трубе потребуется 6+6=12 часов чтобы наполнить бассейн.
Для вычисления промежутков знакопостоянства сперва приравняем нашу функцию к нолю и решим полученное квадратное уравнение, то есть Теперь необходимо нарисовать ось абсцисс (0х) и на ней отобразить полученные точки, то есть мы получим 3 интервала, такие как 1. (- беск; -3) 2. [-3;4] 3.(4; беск) Определим знак функции на каждом интервале 1. (- беск; -3): у(-5)=-(-5)^2+(-5)+12=-25-5+12=-30+12=-18 <0 2. [-3;4] y(0)=0^2+0+12=0+0+12=12 >0 3.(4; беск) y(5)=-(5)^2+5+12=-25+17=-8 <0 И так мы видим что на интервале (- беск; -3)и(4; беск) функцию имеет отрицательный знак,а на интервале [-3; 4] соответственно положительный. ответ: х Є (- беск; -3) и(4; беск) отрицательные значения, х Є [-3; 4] положительные значения