1. Выпадение 2 очков при 1 бросании = 6, при втором бросании, тоже = 6, значит равновозможных исходов 6*6=36
2. Для того, чтобы 2 очка были наименьшими из выпавших, при первом броске должно выпасть 2, при втором броске - любое количество очков, кроме 1. Или при первом броске - любое, кроме 1, а при втором броске - 2 очка.
3. Возможен вариант выпадения 2 очков и при 1 и при 2 броске, поэтому, при подсчете, вариант это учитывается 2 раза.
3. Выпадение 2 очков из всех, кроме 1 очка = 5, при первом, и 5 при втором броске:
количество благоприятных исходов: 5+5-1=9 ((-1) - выпадение 2 очков в каждом из двух бросаний)
4. Вероятность благоприятного исхода: 9/36=1/4=0.25
ответ: 0.25
9^x = (3^x)^2
6^x = 2^x * 3^x
здесь нужно делить обе части равенства на (2^x)^2
или на (3^x)^2 ---без разницы)))
разделим на (2^x)^2
подучим: 1 - 12*(3^x) / (2^x) + 11* ((3/2)^x)^2 = 0
это квадратное уравнение относительно (3/2)^x
D=12*12 - 4*11 = 4*(36-11) = 4*25 = 10^2
корни: (12 +- 10) / 22
(3/2)^x = 1 ---> x = 0
(3/2)^x = 1/11 ---> (2/3)^x = 11 ---> x = log(2/3) (11)
разделим на (3^x)^2
подучим: ((2^x)/(3^x))^2 - 12*(2^x) / (3^x) + 11 = 0
это квадратное уравнение относительно (2/3)^x
D=12*12 - 4*11 = 4*(36-11) = 4*25 = 10^2
корни: (12 +- 10) / 2 = 6 +- 5
(2/3)^x = 1 ---> x = 0
(2/3)^x = 11 ---> x = log(2/3) (11)