f(x) = cos(x)/tg(x) = cos(x)/(sin(x)/cos(x)) = cos²(x)/sin(x) = (1 - sin²(x))/sin(x) =
= (1/sin(x)) - sin(x).
Область определения функции f(x): sin(x)≠0 и cos(x)≠0,
cos(x)≠0 ⇔ sin(x)≠±1 ⇔ sin(x) ≠ -1 и sin(x)≠ 1.
f(x) = (1/sin(x)) - sin(x),
sin(x) = t,
t∈(-1;0)∪(0;1).
f(x) = g(t) = (1/t) - t,
g'(t) = - (1/t²) - 1 < 0,
функция g(t) убывающая.
при t→ -1, g(t) → g(-1) = -1+1 = 0.
при t → -0, g(t) → -∞,
при t → +0, g(t) → +∞,
при t → 1, g(t)→g(1) = 1-1 = 0.
Итак, область значений функции f(x) совпадает с областью значений функции g(t) при t∈(-1;0)∪(0;1), которая есть (-∞;0)∪(0;+∞).
ответ. (-∞; 0)∪(0; +∞).
Объяснение:
Уравнение касательной имеет вид:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
Дана функция:
f(x)=-x^2-4x+2f(x)=−x
2
−4x+2
Найдём значение функции в точке x₀:
f(x_0)=f(-1)=-(-1)^2-4 \cdot (-1)+2=-1+4+2=5f(x
0
)=f(−1)=−(−1)
2
−4⋅(−1)+2=−1+4+2=5
Найдём производную функции:
f'(x)=-2x^{2-1}-4=-2x-4f
′
(x)=−2x
2−1
−4=−2x−4
Найдём производную функции в точке x₀:
f'(x_0)=f'(-1)=-2 \cdot (-1) -4 =2-4=-2f
′
(x
0
)=f
′
(−1)=−2⋅(−1)−4=2−4=−2
Подставим найденные значения, чтобы найти уравнение касательной:
y=f(x_0)+f'(x_0)(x-x_0)y=f(x
0
)+f
′
(x
0
)(x−x
0
)
y=5+(-2)(x-(-1))y=5+(−2)(x−(−1))
y=5-2(x+1)y=5−2(x+1)
y=5-2x-2y=5−2x−2
\boxed{y=-2x+3}
y=−2x+3
ответ: y=-2x+3 - искомое уравнение.