Упростим выражение 1 - sin (2 * a) - cos (2 * a).
Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:
sin^2 x + cos^2 x = 1;
cos (2 * x) = cos^2 x - sin^2 x;
sin (2 * x) = 2 * sin x * cos x.
Тогда получаем:
1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;
Сгруппируем подобные значения.
(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).
Объяснение:
9a = 9b + 36
a = b + 4
Остаток от деления равен 36, значит, делитель больше 36.
Возможные значения b:
b = 3; 4; 5
Соответствующие им значения а:
a = 7; 8; 9
ответ: 7 + 8 + 9 = 24.
2) Если дробь правильная, то 10a+b < 10b+a; значит a < b.
Так как b = 1; 2; 3; 4; то a = 1; 2; 3
12/21; 13/31; 23/32; 14/41; 24/42; 34/43
ответ: Всего 6 дробей
3) Начинаем с 1. Сначала прибавляем 3, получаем 4, потом умножаем на 3, получаем 12. Дальше опять прибавляем 3 и умножаем на 3.
Следующее число будет 48*3 = 144.