М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
медведьш12233213
медведьш12233213
29.11.2021 08:36 •  Алгебра

Сколько существует различных распределить между 14 сотрудниками 3 различны(-х, -е) преми(-й, -и)?

Выбери формулу, которой нужно воспользоваться.

👇
Ответ:
serebrykov947
serebrykov947
29.11.2021
Чтобы решить эту задачу, нам понадобится формула комбинаторики - формула для количества сочетаний без повторений. В данной задаче мы должны разместить 3 различные премии между 14 сотрудниками. Формула комбинаторики, которую мы можем использовать, называется сочетанием без повторений и выглядит следующим образом: C(n, k) = n! / (k!(n-k)!) Где: - n - общее количество элементов (сотрудников) - k - количество элементов, которые мы выбираем (премии) - n! - факториал числа n, т.е. произведение всех натуральных чисел от 1 до n Подставим значения в данную формулу. C(14, 3) = 14! / (3!(14-3)!) = 14! / (3!11!) Теперь разложим факториалы на множители: 14! = 14 * 13 * 12 * 11! 3! = 3 * 2 * 1 = 6 11! = 11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 Подставим значения обратно в формулу: C(14, 3) = (14 * 13 * 12 * 11!) / (6 * 11!) Заметим, что 11! в числителе и знаменателе сокращаются. C(14, 3) = (14 * 13 * 12) / 6 = 2184 / 6 = 364 Ответ: Существует 364 различных способа распределить 3 различные премии между 14 сотрудниками.
4,5(2 оценок)
Проверить ответ в нейросети
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ