сокращать(округлять) десятичные дроби можно до десятых-один знак после запятой, сотых- два знака, тысячных- три знака и дальше соответственно.
твоё число 156,79571212, сократим до сотых. следовательно, у нас после запятой должно остаться 2 циферки. Теперь, внимание, алгоритм. Смотрим на цифру, стоящую после, тех самых двух что должны остаться(Х). В нашем случае Х это 5. Так вот, ели это цифра Х меньше 5 (0,1,2,3,4), то те самые две циферки после запятой прямиком как есть идут в ответ, если же цифра Х равна 5 или больше (5,6,7,8,9) прибавляем к нашему числу из двух знаков единицу. Это и будет ответом.
156,79571212 до сотых = 156,80 (до сотых, след 2 цифры после запятой; 5,след. +1; 79+1=80)
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)