a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
подбираем 1 корень:
x=1
тогда этот многочлен можно представить как:
(x-1)(3x^2+ax+b)=3x^3+ax^2+bx-3x^2-ax-b=3x^3+x^2(a-3)+x(b-a)-b
известно, что:
3x^3+x^2-3x-1=3x^3+x^2(a-3)+x(b-a)-b
тогда составляем систему:
a-3=1
b-a=-3
b=1
решаем:
b=1
a=1+3=4
тогда:
3x^3+x^2-3x-1=(x-1)(3x^2+4x+1)
раскладываем на множители 3x^2+4x+1
3x^2+4x+1=0
D=16-12=4
x1=(-4+2)/6=-1/3
x2=-1
3x^2+4x+1=3(x+1)(x+1/3)=(x+1)(3x+1)
в итоге исходный многочлен разложится на множители:
3x^3+x^2-3x-1=(x-1)(x+1)(3x+1)
(。_。)
простите если не так я просто не специалист
y =-11
-11 = - 3x +4
3x = 11+4 =15
x =15/3 =5
x=5