cрочноо
1. Найдите дисперсию, используя закон распределения случайной величины Y.
1)
Y -2 -1 1 2 3
P 0,3 0,1 0,2 0,1 0,3
2)
Y -2 -1 1 2
P 0,1 0,2 0,5 0,2
2. Если пропорции неизвестных вероятностей совпадают, заполните таблицу неполного закона распределения случайной величины x. Вычислите M(X), D(X), a(x).
X 3 7 12 15 18 21
P 0,1 0,1 ? ? 0,1 0,1
3. Найдите значения M (X + Y), D (X + Y) по закону смерти случайных величин X и Y
1)
X 6 10 14 20
P 1/4 0,2 0,3 1/4
2)
X 3 8 11 16
P 0,2 0,3 0,3 0,2
Теперь мы знаем, что туристы плыли вверх по течению реки, поэтому скорость лодки относительно берега будет равна разности скорости лодки и скорости течения реки: 6 км/ч - 3 км/ч = 3 км/ч.
Затем туристы гуляли 2 часа и вернулись обратно через 6 часов от начала путешествия. Обратите внимание, что если они вернулись через 6 часов, то скорость лодки относительно берега должна быть такой же, как и вначале путешествия.
Итак, теперь они плывут вниз по течению реки и скорость лодки относительно берега равна 3 км/ч.
Так как расстояние равно скорости умноженной на время, для пути вверх по течению реки мы можем записать уравнение: время в пути вверх по течению равно расстоянию, деленному на скорость.
Таким образом, время в пути вверх по течению будет: х км / 3 км/ч = х/3 часа.
После того, как туристы вернулись обратно, они плыли вниз по течению реки, поэтому время в пути вниз по течению будет: х км / 3 км/ч = х/3 часа.
Теперь мы знаем, что время гуляния составило 2 часа, и обратное путешествие заняло 6 часов. Следовательно, общее время путешествия будет равно сумме времени в пути вверх и вниз, а это равно x/3 + x/3 + 2 часа.
Мы также знаем, что обратное путешествие заняло 6 часов, поэтому мы можем записать уравнение: x/3 + x/3 + 2 = 6.
Сначала мы можем объединить две части x/3 в одну: 2x/3 + 2 = 6.
Затем вычтем 2 из обеих сторон уравнения: 2x/3 = 4.
Далее умножим обе части уравнения на 3: 2x = 12.
И наконец, разделим обе части уравнения на 2: x = 6.
Таким образом, расстояние от лагеря до места, где туристы причалили к берегу, равно 6 километрам.