аргумент комплексного числа argz - это угол между вектором, соответствующим этому комплексному числу, если изобразить его на комплексной плоскости, и положительным направлением оси ох; если считать угол против часовой стрелки, от оси к вектору, то угол будет со знаком +, если считать по часовой стрелке, то угол нужно брать со знаком -.
z = 1 - i это вектор, координаты его имеют вид (1 ; -1).
верны соотношения для угла fi = arg z:
cos fi = x / |z|
sin fi = y / |z|
здесь |z| = sqrt(x^2 + y^2) - модуль комплексного числа z (он же - длина вектора с координатами (x; y), где z = x + yi )
таким образом, получаем, |z| = sqrt ( 1^2 + (-1)^2 ) = sqrt 2
cos fi = 1 / sqrt 2
sin fi = -1 / sqrt 2
такой угол - это -pi/4
arg z = -pi/4
Например, если всего 9 цветов, и мы покрасим по 10 кубиков в каждый цвет, то мы используем 90 кубиков. Остается 11. Любой из них красим в любой из наших 9 цветов - и получаем 11 кубиков одного цвета.
Если всего 10 цветов, то, покрасив по 10 кубиков в каждый цвет, мы получим 100 цветных кубиков. Красим 101-ый кубик в любой цвет, и получаем 11 кубиков одного цвета.
Теперь пусть у нас больше 10 разных цветов. Например, 11.
Тогда мы всегда сможем выбрать 11 кубиков, покрашенных в 11 разных цветов.
Если цветов будет еще больше, например, 15, то выбрать 11 кубиков разных цветов будет еще проще.
Таким образом, мы всегда можем найти или 11 одинаковых,
или 11 разных кубиков.