В решении.
Объяснение:
Освободиться от иррациональности в знаменателе.
1) b/2√5;
Умножить числитель и знаменатель на √5:
b/2√5 * √5/√5 = b *√5 /2√5 *√5 = b√5/2 * 5 = b√5/10;
2) 8/(3 - √t);
Умножить числитель и знаменатель на сопряжённое выражение
(3 + √t):
8/(3 - √t) * (3 + √t)/(3 + √t) =
= 8 * (3 + √t)/(3 - √t) * (3 + √t) =
в знаменателе развёрнута разность квадратов, свернуть:
= 8(3 + √t)/(3² - (√t)²) =
= 8(3 + √t)/(9 - t).
3) c/(√c + √5);
Умножить числитель и знаменатель на сопряжённое выражение
(√c - √5):
c/(√c + √5) * (√c - √5)/(√c - √5) =
= с * (√c - √5)/(√c + √5) * (√c - √5) =
в знаменателе развёрнута разность квадратов, свернуть:
=с * (√c - √5)/((√c)² - (√5)²) =
= с(√c - √5)/(с - 5).
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение: