Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
В задаче отсутствует вопрос. Исхожу из предположения, что требуется определить время движения. t = S/v = 400/v. Но скорость задана не конкретным значением, а границами. Значит время можно только оценить. 50<v<80 заменим обратными числами,при этом меняем знак неравенства. 1/50 > 1/v > 1/80. Запишем в привычном виде: 1/80 < 1/v < 1/50. Теперь умножим все части неравенства на 400. 400/80< 400/v< 400/50. 5< t<8. Значит при заданных условиях время движения от 5 до 8 часов.
вот ответ на картинке
Объяснение:
всё правилно