Парабола симметричная фигура . это ясно. если сложить ее по оси симметрии, то две ее ветви сольются. то есть сгибать ее надо в точке минимума, так как именно в этой точке она из убывающей становится возрастающей. эта ось симметрии будет параллельна оси оу . осталось найти координаты точки перегиба.(вершины параболы). для этого есть красивая формула . x0 = - b / 2a. y = 2 x^2 - 5 x + 1; a = 2 ; b = - 5; x0 = 5/4 = 1,25. тогда уравнение оси симметрии примет вид х = 1,25. другими словами, при любом значении у значение х будет равно 1,25. это линия - вертикальная ось . перпендикулярно оси 0х через точку х =1,25 проводим линию и получаем ось симметрии.
Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
Раздели обе части на log1/3, получишь 5x-3=7x+5,
5x-7x=5+3,
-2x=8,
x= -4