1. Найдите производные функций
А) y= x6 y`=6x5
б) y = 2 y`=0
в) y=5/x y`=-5/x^2
г) y = 3-5x y=-5
д) y= 8 √x + 0,5 cos x y`=4/Vx -0.5sinx
е) y=sinx / x y`={xcosx-sinx}/x^2
ж) y= x ctg x y`={ctgx-x/sin^2x}=cosx/sinx- x/sin^2x={cosxsinx-x}/sin^2x
з) y= (5x + 1)^7 y`=5*7(5x+1)^6=35(5x+1)^6
2.Найдите угол, который образует с положительным лучом оси абсцисс касательная к графику функции:
y= x^8/8 – x^5/5 - x √3 – 3 в точке x0= 1
y`=x^7-x^4-V3 tga=y`(1)=1-1-V3=-V3 a=120*
3. Вычислите если f(x)=2cos x+ x2- +5 что надо?
4. Прямолинейное движение точки описывается законом s=t4 – t2(м). Найдите ее скорость в момент времени t=3с.
v=s`=4t3-2t
v(3)=4*27-2*3=108-6=102 м/с
5. Найдите все значения х, при которых выполняется неравенство f/(x)<0, если
f(x)= 81x – 3x3
f`=81-9x^2=9(3-x)(3+x)
-3 3
- + -
xe(-oo,-3)U(3,+oo)
6. Найдите все значения х, при которых выполняется равенство f/(x)=0, если f(x)=cos2x - x√3 и x€[0,4π].
все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)
2cos^2x-3cosx+1=0
cosx(1,2)=(3+- корень(9-8))/4
cosx(1,2)= (3+-1)/4
cos x=1/2 cos x=1
x=п/3+2пn, n-целое x=2пn n-целое