М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ledytyt13
ledytyt13
14.03.2022 14:40 •  Алгебра

При яких значеннях х похідна функції f(x) = 3 sin x/3+x√3/2 більша від нуля​

👇
Ответ:
nlikachev
nlikachev
14.03.2022

-\frac{5\pi }{2} + 2\pi n < x

Объяснение:

f(x) = 3 sin( \frac{x}{3} ) + x\frac{\sqrt{3} }{2}

f(x)^{'} = (3 sin( \frac{x}{3} ) + x\frac{\sqrt{3} }{2})^{'} = cos(\frac{x}{3} ) + \frac{\sqrt{3} }{2}

f(0)^{'} = cos (\frac{0}{3}) + \frac{\sqrt{3} }{2} = cos (0) + \frac{\sqrt{3} }{2} = 1 + \frac{\sqrt{3} }{2} = \frac{2 + \sqrt{3} }{2}

f(x)^{'} 0

cos(\frac{x}{3} ) + \frac{\sqrt{3} }{2} 0

cos(\frac{x}{3} ) - \frac{\sqrt{3} }{2}

- arccos(-\frac{\sqrt{3} }{2} ) + 2\pi n < \frac{x}{3} < arccos(\frac{\sqrt{3} }{2} ) + 2\pi n

-\frac{5\pi }{6} + 2\pi n < \frac{x}{3}

-\frac{5\pi }{2} + 2\pi n < x

4,6(34 оценок)
Открыть все ответы
Ответ:
sofiaivkina84
sofiaivkina84
14.03.2022

1. Интегрирование ведется по множеству 0 < x < 1, 0 < y < √(2x-x^2)

√(2x - x^2) принимает значения от 0 (x = 0) до 1 (x = 1), так что множество интегрирования является частью множеста 0 < x < 1, 0 < y < 1, где выполняется y < √(2x - x^2)

0 < y < √(2x - x^2) при 0 < x < 1 эквивалентно 0 < y^2 < 2x - x^2 = 1 - (1 - 2x + x^2) = 1 - (x-1)^2

т.е. (x-1)^2 < 1 - y^2

|x - 1| = 1 - x < √(1 - y^2)

x > 1 - √(1 - y^2)

ответ: интеграл от 0 до 1 по dy интеграл от 1 - √(1-y^2) до 1 f(x,y) по dx


2. 0 < y < 1, -√(1-y^2) < x < 1-y

-√(1-y^2) принимает значения от -1 (y = 0) до 0 (y = 1)

1 - y принимает значения от 0 (y = 1) до 1 (y = 0)

Т.е. область интегрирования: -1 < x < 1, 0 < y < 1, где одновременно -√(1-y^2) < x и x < 1-y

x < 1 - y ~ y < 1 - x

-√(1-y^2) < x :

1) При x > 0 - любой y (от 0 до 1)

2) При x < 0:

√(1-y^2) > (-x) > 0

1 - y^2 > x^2

0 < y^2 < 1 - x^2

0 < y < √(1 - x^2)

Т.е. исходные условия эквивалентны тому, что:

при x >= 0: y < 1 - x

при x < 0: одновременно y < √(1 - x^2) и y < 1 - x, но т.к. √(1 - x^2) <= 1 - x при x < 0, достаточно условия y < √(1 - x^2)

ответ: (интеграл от -1 до 0 по dx интеграл от 0 до √(1 - x^2) f(x,y) по dy) + (интеграл от 0 до 1 по dx интеграл от 0 до 1 - x f(x,y) по dy)

Или, что то же самое, интеграл от -1 до 1 по dx от 0 до min{ 1 - x, √(1 - x^2) } f(x,y) по dy

4,4(99 оценок)
Ответ:
555759
555759
14.03.2022
Задание№1 на фото
№2
у=х-(-3)
3х-3у=-9

3х-3(х+3)=-9
3х-3х=-9+9
0=0 следовательно прямые совпадают и имеют бесконечное множество решений
№3
х-у=3
2х-у=7

-2х+2у=-6
2х-у=7

-2х+2у+2х-у=-6+7
у=1
х=3+у
х=4
 следующий пример
х-2у=1
2х+4у=18

-2х+4у=-2
2х+4у=18

-2х+4у=2х+4у=-2+18
8у=16
у=2
х=2у+1
х=5
№4
1 этап. Составление матем. модели
х - количество 5-ти рублёвых монет
у - клоичество 1-но рублёвых монет 
составим систему
х+у=200
5х+у=800

2 этап. Работа с составленной мат. моделью
х+у=200
5х+у=800
будем решать методом подстановки
у=200-х
5х+у=800

5х+200-х=800
4х=600
х=150

у=200-150=50

3 этап ответ на поставленный вопрос
ответ: 150 пятирублёвых монет и 50 рублёвых монет

Решить 1) задана система уравнений. решите систему с графического метода. 3х + у = 7 4х - 2у = 6 2)
4,8(3 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ