Объяснение:
Сумма 1+3+...+(2n-1) значит сумму всех нечетных натуральных чисел начиная с 1 и заканчивая 2n-1
Так как при n=1 =>2n-1=2*1-1=1, то для базы индукции сумма начинается с 1 и ею же заканчивается, т.е. состоит только из одного числа 1,
а уже при n=2 (1+3), n=3 (1+3+5) и т.д., и больше будет два и больше слагаемых, и последний член предстанет "более явно",
при n=1 : 1+3+...+(2n-1) =1=(2n-1)
формула 2n-1 показывает какой вид имеет n-ое слагаемое суммы, но в случае n=1 сумма состоит из одного единственного слагаемого 1
Нужно знать формулы сокращенного умножения:
(а ± b)² = а² ± 2аb + b² и (а – b)(а + b) = а² – b².
1. (x – 3)² – 2x² = 9 – (x + 1)²,
х² – 6х + 9 – 2х² = 9 – х² – 2х – 1,
–х² – 6х + 9 = –х² – 2х + 8,
–х² – 6х + х² + 2х = 8 – 9,
–4х = –1,
х = 1/4 = 0,25.
2. (x⁴ – 3)(x⁴ + 3) – (x⁴ – 5)² = х⁸ – 9 – (х⁸ – 10х⁴ + 25) = х⁸ – 9 – х⁸ + 10х⁴ –
– 25 = 10х⁴ – 34
при х = 3 10х⁴ – 34 = 10 · 3⁴ – 34 = 10 · 81 - 34 = 810 – 34 = 776.
3. (3a + 2b)² · (3a – 2b)² = ((3a + 2b)(3a – 2b))² = (9а² – 4b²)² = 81а⁴ –
– 72а²b² + 16b⁴.