На фото график y= - x^2+3 1)ООФ: D(y):(-∞;+∞) 2) Множество значений ф-ции Е(у):(-∞;3] 3)у=3- наибольшее значение ф-ции, наименьшего значения ф-ция не имеет. 4)График ф-ции симметричен относительно оси ОУ 5)пересекает ось ОУ: х=0 в точке (0;3) пересекает ось ОХ: у=0 -x^2+3=0 -x^2= -3 x=+ -√3 6)Значения аргумента х=+ -√3 являются нулями ф-ции 7)на промежутке (-∞;0]-ф-ция возрастает на промежутке [0;+∞) - ф-ция убывает 8)ф-ция принимает отрицат значения на промежутке (-∞;-√3)U(√3;+∞) ф-ция принимает положительные значения на промежутке (-√3;√3)
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)