1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
Все слагаемые разделим на 6^x > 0;
3* 4^x / 6^x + 2*9^x / 6^x - 5* 6^x / 6^x < 0;
3 * (4/6)^x + 2* (9/6)^x - 5 *1 < 0;
3*(2/3)^x + 2 * (3/2)^x - 5 < 0;
(2/3)^x = t > 0; (3/2)^t = 1 / t ;
3 * t + 2 / t - 5 < 0; * t ≠ 0;
(3t^2 + 2 - 5t) / t < 0;
(3t^2 - 5 t + 2) / t < 0;
t > 0; ⇒ 3 t^2 - 5t + 2 < 0
t1 = 1; t 2 = 2/3;
3(t - 1)*(t - 2/3) <0;
используем метод интервалов
+ - +
(0)(2/3)(1) t
при t > 0; ⇒ t ∈ (2/3; 1);
составим двойное неравенство :
2/3 < (2/3)^x < 1;
(2/3)^1 < (2/3)^x < (2/3)^0;
2/3 < 1; ⇒ 0 < x < 1.
х∈ (0; 1)