Скорее всего здесь речь идет об убывающей геометрической прогрессии...
для убывающей геометрической прогрессии Sn -> b1 / (1-q)
b1 / (1-q) = 3/4 ___ 4b1 = 3(1-q)
и сумма кубов тоже будет убывающей... => Sn3 -> (b1)^3 / (1-q^3)
(b1)^3 / (1-q^3) = 27/208
27(1-q)^3 / (64(1-q^3)) = 27/208
(1-q)^3 / ((1-q)(1+q+q^2)) = 4/13
(1-q)^2 / (1+q+q^2) = 4/13
13(1-2q+q^2) = 4(1+q+q^2)
13-26q+13q^2 - 4-4q-4q^2 = 0
3q^2 - 10q + 3 = 0
D = 100 - 4*9 = 64
q1 = (10 + 8)/6 = 3 ___ q2 = (10 - 8)/6 = 1/3
b1 = 1/2
Сумма квадратов членов прогрессии = (b1)^2 / (1-q^2) = 1/4 : 8/9 = 1/4 * 9/8 = 9/32

Найдем ОДЗ (Область допустимых значений). Т.к. на ноль делить нельзя, знаменатель не должен быть равен 0. Отсюда находим:

Дальше можно решить разными
Решим методом интервалов (более удобен):

Отмечаем точки ОДЗ и решения на координатной прямой, находим знаки для каждого промежутка и находим решение неравенства (см. прикрепленный рисунок).
P.S. Незакрашенные точки значат, что это значение не входит в промежуток (обозначается круглой скобочкой), а закрашенные - наоборот (обозначается квадратной скобочкой).
![x\in(-\infty;-6]\cup[5;8)](/tpl/images/0942/7912/1fa84.png)
Решим с правила расщепления:
Т.е. существуют два случая, при которых частное
может быть ≥ 0 (Нужно использовать >, < вместо ≥, ≤ соответственно для знаменателя, поскольку он не может быть равен 0):
или 
Т.е. решением является совокупность (нас устраивает и то, и другое решение):

Зная это правило, решаем неравенство:


Решим, для удобства, неравенства отдельно.
Первое:

Возможны два случая, когда произведение a × b может быть ≥ 0:
или 
Т.е. решением является совокупность (нас устраивает и то, и другое решение):
![\begin{bmatrix}\left\{\begin{matrix}x+6\geq0\\x-5\geq0\end{matrix}\right.\\\left\{\begin{matrix}x+6\leq0\\x-5\leq0\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x\geq-6\\x\geq5\end{matrix}\right.\\\left\{\begin{matrix}x\leq-6\\x\leq5\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}x\in[5;+\infty)\\x\in(-\infty;-6]\end{matrix}\\x\in(-\infty;-6]\cup[5;+\infty)](/tpl/images/0942/7912/dd8a0.png)
Второе:

Возможны два случая, когда произведение a × b может быть ≤ 0:
или 
Т.е. решением является совокупность (нас устраивает и то, и другое решение):
![\begin{bmatrix}\left\{\begin{matrix}x+6\leq0\\x-5\geq0\end{matrix}\right.\\\left\{\begin{matrix}x+6\geq0\\x-5\leq0\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x\leq-6\\x\geq5\end{matrix}\right.\\\left\{\begin{matrix}x\geq-6\\x\leq5\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}x\in\O\\x\in[-6;5]\end{matrix}\\x\in[-6;5]](/tpl/images/0942/7912/eb716.png)
Вернемся к решению другой совокупности:
![\begin{bmatrix}\left\{\begin{matrix}(x+6)(x-5)\geq0\\x8\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x\in(-\infty;-6]\cup[5;+\infty)\\x\in(-\infty;8)\end{matrix}\right.\\\left\{\begin{matrix}x\in[-6;5]\\x\in(8;+\infty)\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}x\in(-\infty;-6]\cup[5;8)\\x\in\O\end{matrix}\\\\x\in(-\infty;-6]\cup[5;8)](/tpl/images/0942/7912/144a0.png)
Учитывая ОДЗ, найдем решение:
![\left\{\begin{matrix}x\in(-\infty;-6]\cup[5;8)\\x\neq8\end{matrix}\right.\\x\in(-\infty;-6]\cup[5;8)](/tpl/images/0942/7912/008e1.png)
Теперь решим другое неравенство.

Зная, что
разделим наше неравенство на 4 системы:




Вот
......................