Нужно найти наименьшее натуральное число, которое при умножении на 2 даст полный квадрат, а при умножении на 3 - полный куб. Обозначим искомое число за . Любое число можно представить в виде произведения простых множителей. Запишем: , где - некоторые натуральные числа. По условию, число является полным квадратом, значит и - четные числа, а - полный квадрат. Аналогично, число является полным кубом, значит и делятся на 3, а - полный куб. Легко видеть, что наименьшие возможные значения это , значит .
1) Просто сложим два уравнения. Получается: x=3. Подставляем во второе уравнение. 3-y=2 очевидно, что y=1. Упор.пара: (3,1) 2) То же самое. y=1 Подставляем в первое уравнение. x+1=3 => x=2. (2,1) - упор.пара (если все строго). 3) Тут на самом деле несколько вариантов элементарного решения. Я использую самый простой (но не самый короткий). Модуль дает нам этакую мини-системку для первого уравнения, в одном ур. x, в другом -x. Типа: Только маленькая скобка не фигурная, а квадратная. Решается так - сначала подставляешь в систему первое уравнение, затем второе (по очереди). 3.1) Здесь: Решаем подстановкой. 5-y+4y=5 3y=0 y=0 => x=5. (5,0) ответ. 3.2) Здесь: То же самое. y-5+4y=5 5y=10 y=2.
Обозначим искомое число за
По условию, число
Легко видеть, что наименьшие возможные значения