Объяснение:
1) Треугольники ABM и CBM
AB=BC (по условию)
BM - общая
∠M=90° (по условию)
Вывод: треугольники равны по катету и гипотенузе
2) Треугольники FDN и NKF
DN=FK (по условию)
FN - общая
∠D=∠K=90° (по условию)
Вывод: треугольники равны по катету и гипотенузе
3) Треугольники SDO и SPO
∠D=∠P=90° (по условию)
SO - общая
∠SOD=∠SOP (по условию)
Вывод: треугольники равны по гипотенузе и острому углу
4) Треугольники RMX и XNR
RX - общая
∠MXR=∠NRX (по условию)
∠M=∠N=90° (по условию)
Вывод: треугольники равны по гипотенузе и острому углу
Треугольники MRT и NXT:
RT=XT (тк ∠MXR=∠NRX (по условию), треугольник RTX - равнобедренный (по свойству))
∠M=∠N=90° (по условию)
Из доказательства пары этого пункта ∠MRX=∠NXR (соотв. элементы равных фигур равны), но ∠MXR=∠NRX (по условию)=> ∠MRT=∠NXT
Вывод: треугольники равны по гипотенузе и острому углу
2) (0;4)
4) (-4;-2)
6) (-3;-1) ∪ (3;6)
Объяснение:
Метод интервалов.
2)x²-3x-4=0 x²+x=0
x₁+x₂=3; x₁x₂=-4 x(x+1)=0
x₁=4 ; x₂=-1 x₁=0; x₂=-1
+ || + | - | +
° ° ° ⇒
-1 0 4
(0;4)
4) x²+2x-8=0 x²-4=0
x₁=-4 ; x₂=2 x₁ ₂=±2
+ | - | + || +
° ° ° ⇒
-4 -2 2
(-4;-2)
6) x²-5x-6=0 -x²=-9
x₁=6 ; x₂=-1 x₁ ₂=±3
- | + | - | + | -
° ° ° ° ⇒
-3 -1 3 6
(-3;-1) ∪ (3;6)