Пусть неизвестное целое число равно х, тогда х-1 и х+1 - целые числа, расположенные слева и справа от числа х, соответственно. По условию, сумма квадратов данных чисел равна 869. Составим уравнение: (х-1)²+х²+(х+1)²=869 х²-2х+1+х²+х²+2х+1=869 3х²+2=869 3х²=869-2 3х²=867 х²=867:3 х²=289 х= x=
1) x=17 x-1=17-1=16 x+1=17+1=18 Получаем, 16, 17 и 18 - три последовательных целых числа Проверка: 16²+17²+18²=256+289+324=869 2) х=-17 х-1=-17-1=-18 х+1=-17+1=-16 Получаем, -18, -17 и -16 - три последовательных целых числа Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869
Пусть х км/ч собственная скорость лодки, тогда скорость лодки по течению будет(х+3), а скорость лодки против течения(х-3), Время, затраченное на движение по течению будет: 5/(х+3), а время против течения: 6/(х-3), составим уравнение: 5/(х+3) + 6/(х-3)=1, После приведения к общему знаменателю получим уравнение: 5х-15+6х+18=х^2-9. или преобразовав его получим квадратное уравнение: х^2-11х-12=0, решив его через дискриминант получим корни: х=-1(не подходит) и х=12-это собственная скорость лодки, тогда к 12 +3=15км/ч это и будет скорость лодки по течению.
Объяснение:
Решение на фото.