f(x)=x²-3x+2
Найдём нули функции:
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-2)(х-1)=0
х-2=0 => x=2
x-1=0 => x=1
Точки пересечения параболы с осью Х: (1;0) и (2;0)
Найдем вершину параболы по формуле x=-b/2a: a=1; b=-3: x=3/2*1=1.5
y=1.5²-3*1.5+2
y=-0.25
Координаты вершины параболы: (1.5;-0.25)
Все. Параболу можно построить по этим 3-м точкам: (1;0), (1.5;-0.25) и (2;0).
Чтобы график был точнее, можно найти еще несколько точек, подставляя различные значения х в уравнение параболы.
Таблица и график во вложении
(1 - 2Sin²x/2)² -Sin²x/2 = 0
1 - 4Sin²x/2 + 4Sin⁴x/2 - Sin²x/2 = 0
4Sin⁴x/2 -5Sin²x/2 +1 = 0
Sin²x/2 = t
4t² -5t +1 = 0
D = 25 -16 = 9
t₁ = 1 t₂=1/4
Sin²x/2 = 1 Sin²x/2 = 1/4
Sinx/2 = +-1 Sinx/2 = +-1/2
а)Sinx/2 = 1
x/2 = π/2 +2πk , k ∈Z
x = π +4πk , k ∈Z
б) Sin x/2 = -1
x/2 = -π/2 +2πn , n∈Z
x = -π +4πn , n∈Z
в) Sinx/2 = 1/2
x/2 = (-1)^m *π/6 + mπ, m ∈Z
x = (-1)^m*π/3 +2πm , m∈Z
г) Sinx/2 = -1/2
x/2 = (-1)^(c+1)*π/6 + cπ, c ∈ Z
x = (-1)^(c+1)*π/3 + 2cπ, c∈Z